Bryan Melanson

How to Not Fail

Algorithm Correctness and Complexity

While never going to class

Computer Engineering 2020 $\boxed{\mathcal{BM}}$

Contents

1	Pro	of Outline Logic	1
	1.1	Assertions	1
	1.2	Substitutions	1
	1.3	Contracts	1
	1.4	Proof Outlines	2
		1.4.1 Two Tailed If Rule	2
		1.4.2 One Tailed If Rule	2

1 Proof Outline Logic

1.1 Assertions

An assertion is a **condition** that is expected to be true every time execution passes a particular point in a program. Available at run time in C, C++ and Java, an assertion which proves to not be true will prevent the program from running.

Assertions are valuable from a documentation standpoint, and for testing.

1.2 Substitutions

Replacing a free (ie global, not restricted to a certain scope) variable follows the syntax P[x:E] where all occurences of x are replaced by the expression E. This can be extended to multiple variables as [x,y:z,x].

1.3 Contracts

A condition might be required before other conditions become valid:

```
953I \leq V \leq 1050I, provided 0 \leq V \leq 10

OR [953I \leq V \leq 1050I, 0 \leq V \leq 10]

A contract [y = 5, x = 5] can be represented as:
```

$${y = 4}$$

 $x := y + 1$
 ${x = 5}$

This is a **Hoare Triple**, made up of a precondition, a command and a post-condition. This statement can be considered **Partially Correct** if for any values, when the precondition is satisfied, and the command is executed, it can only end in a state satisfying the postcondition.

1.4 Proof Outlines

A **Proof Outline** is a command annotated with assertions. It represents the summary of a proof, if correct. This can be proven to be correct using partial correctness. In sequence, if $\{P\}$ S $\{Q\}$ T $\{R\}$, and both $\{P\}$ S $\{Q\}$ and $\{Q\}$ T $\{R\}$ can be proven to be partially correct, then the full statement is a partially correct outline.

In a proof outline, each command will be preceded by an assertion. This is the **precondition**.

1.4.1 Two Tailed If Rule

 $\{P\}$ if (E) $\{Q\}$ else $\{Q\}$ T $\{R\}$ relies on the if/else conditions being provable along with the equivalent E.

1.4.2 One Tailed If Rule

 $\{P\}$ if (E) $\{Q\}$ T $\{R\}$ relies on the if conditions being provable with E, and $\neg E$ and R being provable.

The initial precondition of a loop P is known as the **Invariant**. It must be proven true at the start of each iteration of a loop, as well as when the loop terminates.