Bryan Melanson

How to Not Fail

Communication Networks

While never going to class

Contents

1	Con	nmunication Networks and Services	2
	1.1	Telegraph Networks and Message Switching	2
	1.2	Telephone Networks and Circuit Switching	2
	1.3	Computer Netowrks and Packet Switching	2
	1.4	Future Network Architectures and Services	2
	1.5	Key Factors in Network Evolution	2
2	App	olications and Layered Architectures	2
	2.1	· · · · · · · · · · · · · · · · · · ·	2
	2.2	Class A	2
	2.3	Class B	2
	2.4	Class C	2
	2.5	Class D	2
	2.6	Class E	2
	2.7	Network Address Ranges	2
3	Digi	igital Transmission Fundamentals	
4	Pee	r to Peer Protocols	2

1 Communication Networks and Services

- 1.1 Telegraph Networks and Message Switching
- 1.2 Telephone Networks and Circuit Switching
- 1.3 Computer Netowrks and Packet Switching
- 1.4 Future Network Architectures and Services
- 1.5 Key Factors in Network Evolution

2 Applications and Layered Architectures

- 2.1 IP Packets
- 2.2 Class A
- 2.3 Class B
- 2.4 Class C
- 2.5 Class D
- 2.6 Class E
- 2.7 Network Address Ranges

$$\begin{array}{ll} \text{Class A} & 0 \rightarrow 127 \\ \text{Class B} & 128 \rightarrow 191 \\ \text{Class C} & 192 \rightarrow 223 \\ \text{Class D} & 224 \rightarrow 239 \\ \text{Class E} & 240 \rightarrow 254 \\ \end{array}$$

3 Digital Transmission Fundamentals

4 Peer to Peer Protocols