Bryan Melanson

How to Not Fail
Software Design

While never going to class

Computer Engineering 2020

Contents

1 UML Class Diagrams

Unified Modeling Language or UML is a standardized modelling language
used to aid in visualizing a system. It is designed to represent activities,
architecture, and interactions of software entities.

1.1 Class Relationships in UML

» Types of Relationships:

1. Association

N

. Aggregation
3. Composition
4. Dependence

5. Generalization

1.1.1 Association (“takes a” relationship)

General purpose relationship. Pointers (C++) and ref variables (Java) « An
association is a general purpose relationship. Whenever two classes need
to communicate with each other. They need some sort of association. Typ-
ically uses a reference variable or a pointer. In a UML diagram this is repre-
sented with a line. These relationships should be named « When you can,
add multiplicity to the UML diagram. One to One, One to many, Many to
one etc. These are shown with... ¢ * means multiplicity Or « Navigabil-
ity is important as it helps defines a classes role, and how it communicates
within the program. Navigability is denoted with an arrow. No arrow means
navigable in both directions.

1.1.2 Aggregation (Whole-Part Relationship)

» Aggregation is a special type of association. If there’s no association then
there is no aggregation. It is used when a class is entirely purposed, or
composed of, another class. « Denoted with a diamond at the “whole” end

1.1.3 Composition (Whole-Part relationship with same lifetime)

» Composition builds off aggregation, although its a little more hardcore. In
Composition, when the “parts” are deleted, the “whole” is deleted as well. »
Looking back on our club/person example. If the club ends, the people dont
end as well. Unless it’s Jones Town lol. An example of this is the following:
When a polygon is destroyed, all the points that it is “composed” of are
also destroyed. If a point is destroyed, then so is the polygon. Also note
the multiplicity here, 1 polygon is composed of 3 or more points marked by
3.5

1.1.4 Summary of Class Relationships

* Remember, UML diagrams show the possible relationships between classes.
That doesn’t mean that they all will. Summary diagram:

1.1.5 Recursive Associations (Boomerang Relationships)

» An association that relates a class to itself « Objects of the class may or
may not be associated to themselves as well

1.1.6 Degrees of Belonging (Lifetimes)

« Attribute: lifetime of attribute == lifetime of object that contains it « Com-
position: lifetime of part == lifetime of whole ¢ Aggregation: Whole-part
relationship Association: Relationship is not whole-part o

1.1.7 Interfaces

» An interface is a class with no attributes (variables) and no implementa-
tions for operations. It’s simply a template for a class.

Remember: Abstract class can have some implementation... Interfaces
cannot have any You can implement multiple interfaces, you can only ex-
tend one class When something implements an interface, it promises to
use all its specified methods and attributes

Here we see interface payment, with credit and cash being two classes that
implement this interface. By doing so they are guaranteed to have a cal-
camount() operation. The sale class is associated with the payment in-
terface, by doing so it knows that whatever kind of payment technique is
passed to the sale it will be able to calculate the amount of the payment.
Generalization == Inheritance

1.1.8 Abstract Operations

» Abstract operations of a generalized class are represented in italics in UML
« Operation “O” is abstract in class C if it does not have an implementation
in class C « Implementation will be in specializations of C « In VP, abstract
classes have a little checkbox:

1.2 Dependence

Out of all the relationships, dependence is the weakest. If a class has any
sort of mention of another class in its parameters, returns, variables, then
it is dependent. Generally, dependence on a class is a bad thing as it makes
a class harder to reuse, isolate debugging, and harder to understand. It is
better to have dependence on an interface. Referring back to this example:
The sale class has a dependency on the payment interface. For reasons ex-
plained earlier. Without it the sale class would have two dependencies, one
to each kind of payment. Then there would be no guarantee that all the dif-
ferent kinds of payments would have a calcamount class. With this design
the sale class doesn’t give a flying fuck how many different kinds of pay-
ment classes there are. You could be paying in bitcoin, who cares! As long
as it interfaces the payment class then we know it will have a calcamount
operation and the sale class knows it can work with it.

1.3 UML Diagrams from Assignments / Google to look at

2 UML - Sequence and Communication Diagrams

3 Principles of Design

A design blows if it... e Is hard to change. This means it is Rigid ¢ Easy to
break, making it fragile « Hard to re-use, not modular, immobile ¢ Hard to
do what its intend to do, constantly doing work arounds Viscous « Needless
Complexity » Needless Repetition

3.1 Design Smells

« Ex. Rigidity, fragility, immobility, viscosity, needless-;complexity, repeti-
tion, opacity. Over time, software rots...

3.2 Single Responsibility Principle (SRP)

* A class should only have one responsibility ¢ A class should only have one
reason to change ¢ Several responsibilities creates unnecessary couplings
between those responsibilities

3.3 Open-Closed Principle (OCP)

» Software entities (classes, functions, etc.) should be open for extension,
but closed for modification ¢ To change behavior, add new code rather than
changing existing code « How? Abstraction.

3.4 Liskov Substitution Principle (LSP)

 Subtypes must be substitutable for their base types ¢ Violated when the
reasonable expectations for a base class are not met for subclass. ¢ Can
avoid violating with strong PRE/POST conditions, i.e, design by contract
Meyer’s Rule: ” A routine redeclaration [i.e. an overridden method] may
only replace the original precondition by one equal or weaker, and the orig-
inal postcondition by one equal or stronger”. « LSP enables OCP.

3.5 Dependency-Inversion Principle (DIP)

» High level modules should not depend on low level modules. Both de-
pend on abstractions. « Abstractions should not depend on details. Details
depend on abstractions. « You shouldn’t depend on a concrete class. All re-
lationships in a program should terminate on an abstract class or interface.

3.6 Interface Segregation Principle (ISP)

« Interface that provides different groups of methods to different clients is
bad « SRP applied to interfaces. « Point is to avoid “fat” interfaces that have
little cohesion between methods

4 Design Patterns

Design pattern is a general solution to a commonly encountered problem
in OO design.

4.1 Iterator

» Provide a way to access elements of an aggregate object sequentially with-
out exposing the underlying representation « Can apply DIP to abstract out
the type of iterator required for a certain data structure.

4.2 Strategy

* Define a set of interchangeable algorithms. Ex: dumbAl/smartAl are dif-
ferent concrete strategies. ¢ They can change, but changes are insulated
from the client code.

4.3 Factory

« Create concrete objects through an abstract “factory” interface

4.4 Singleton

» Singleton class is suitable when we need exactly one object, with global
access. » Ex: 1 OS has 1 file system. Ship has one captain. « Sometimes
referred to as an anti-pattern. Extendable.

4.5 Facade

» With many small classes, may be difficult for clients to understand your
design. ¢ Facade provides a simple interface to a complex system. (can be
singleton)

4.6 Composite
» Allows clients to treat individual objects and compositions of objects uni-
formly. « I.e, you can call methods on classes, or collections of classes.

4.7 Adapter

« Converts interface of a class into another form. ¢ Ex: Switch -; Switchable
Interface(on,off) -; light(on,off) « But, what if light is 3rd party and only has
toggle method? ¢ Turn into: Switch -; Switchable Interface(on,off) -¢ light
adapter(on,off)-;light(toggle)

4.8 Observer

» Sometimes, objects need to update when activity occurs in a subject ob-
ject. « Observing/listening objects subscribe to the subject ¢ Subject auto-
matically notifies observer objects when something is changed ¢ Subjects
extend “Subject”, observers implement “Observer”

4.9 Decorator

» Add new behaviors to an object without inheritance Inheritance: new
behaviors at compile time. » Decorator: run time « Look at note examples

4.10 Command

« Treats requests as objects. ¢ Instead of function call, we create an object
that provides an execute method and stores the parameters of the function
call. » Applications: Queue up commands, provide logging, transactions,
unlimited undo/redo

5 Threads and Concurrency in Java

5.1 Concurrency

» Multiple agents running at the same time and interacting ¢ Ex. Interacting
processes running on different computers (running Internet Explorer and
Chrome at the same time) ¢ Multithreading: multiple threads of control
» Concurrency can be intermachine, interprocess or multithreading « Rea-
sons for using: o Speed — multiple threads on multiple processors (faster
processing?) o Distribution — may want different parts of a system located
on different machines o Asynchrony - it is easier to deal with multiple
sources of events (multiple inputs) by having one thread dedicated to each
stream of incoming or outgoing events (I/O ports or signals)

5.2 Threads

 Each thread has its own: o Program counter o Registers o Local variables
and stack ¢ All threads share the same heap (objects)

5.3 Multiple Processors

Time splicing implementation (for running threads concurrently): ¢ Single
Processor —the CPU is switched at unpredictable times « Multiple Processor
— thread may occasionally migrate

5.4 Thread Objects in Java

- Remember: o Objects are shared by threads o In Java, access to an object’s
methods is uncontrolled ¢ Use the run() method ¢ Starting and new thread:
o Calling t.start() starts and new thread, which executes t.run() « Example
output: « When t.run() completes the thread stops, then the program exits

5.5 Race Conditions

» A race condition is when a system’s correctness depends on a certain or-
der of events, but the order of those events is not sufficiently controlled by
the design of the system ¢ Race conditions occurs when 2 agents have un-
controlled access to a shared resource « Example in notes: trains crossing
bridge with only one track « Need control measures — acquiring and relin-
quishing of tokens « See example of a counter in the notes (Threads Part 1
Slide 21), to summarize: o Two threads created that share the same object
Counter c o Printing the output shows that our results have been distorted
o The increment operation counter.increment() reults in multiple bytecode
instructions that get interleaved (mixed up) o ++count example: threads p
and q “race” each other, the result was that an increment was lost See
notes for second example

5.6 Synchonized Methods

» Methods may be declared synchronized « How does it work? For each ob-
ject: o The object will be given a token called its “lock” o At each point
in time, each lock is owned by one thread or no threads (no sharing!) o A
thread has to wait until a lock is free o A thread will own a lock until it de-
cides to relinquish it (temporary but protected ownership) « Using the syn-
chronized method x.m(): o A thread will invoke the synchronized method
x.m(), and then: If it does not already the lock, it will wait until it is free
Once the lock is acquired, the thread begins to execute the method o When
a thread leaves an invocation of a synchronized method: If it leaving the
synchronized last invocation for the object it’ll give up the lock as it leaves

(leaves keys behind—like a good tenant) « See notes for examples and room
metaphor

5.7 Design Rule: Shared Objects

« For any object that might be used by more than one thread at the same
time: o Declare all methods that access or mutate the data synchronized o
** Exempted: private methods, constructors « See notes for AccountMan-
ager example

5.8 Waiting

« Other than synchronized, we can also use waiting « Waiting lets us make
a thread wait until a specific condition has arisen

5.9 Type 1: Polling
« Uses loops and .yield to keep thread from hogging CPU

5.10 Type 2: wait and notifyAll

 Better to have a thread wait until notified about change in condition e
To wait, the object sends a wait message « While waiting, the thread gives
up the lock (ownership) ¢ To allow other threads to stop waiting, a thread
sends a notifyAll message to the object

5.11 Mailbox Example

« In this system, producers send a message to the mailbox. The mailbox
then stores the message and acts as an access point for the receivers to
come get the message. Although let’s say the Mailbox is a server with a
limited amount of storage (CAP). If the server receives a message when it
is at memory capacity the message gets dropped and lost. ¢ To prevent this
from happening the send method checks the capacity of the message before
sending. If it is at capacity it waits. By waiting two dope things happen: 1.
Messages wont be dropped and lost 2. The thread doesn’t have to poll the
mailbox taking up CPU and hogging the thread lock. It can release the lock,
sit back and relaxing waiting for someone to tell it to wake up. When a
recipient removes a message from the mailbox it makes room for new ones
so it notifies all that there is room now. By calling notifyall any threads that

were stuck in a wait can now wake up and use the new room. If another
thread beat it to the new open space, it will go back to waiting.

5.12 Deadlocks

» While this is fine and dandy it proposes a problem, what if two threads are
waiting on each other to do something? They will both be stuck in a wait
state thus locking the program. « Slides provide a straightforward example
of this.

5.13 Summary
6 Testing

6.1 Levels of Testing

1. Unit Testing o Test an individual unit of software (methods or complete
classes) 2. Integration Testing o Individual software components are com-
bined and tested as a group 3. System Testing o The system is tested as a
whole

6.2 Testing Methods

» White Box Testing: o The tester has access to underlying implementation
o The tester applies tests to satisfy some criteria » Black Box Testing: o
Tester has no access to underlying implementation o Focusses on testing
the system as a whole to verify requirements have been met

6.3 Test Driven Development

* Agile (software development methodology) recommends using a TDD e
TDD focusses on unit tests o Idea is to write unit tests prior to implement-
ing the feature The test-driven development cycle is: 1. Add a new test 2.
Run all tests The new test should fail because we haven’t implemented the
feature yet! 3. Write some code that causes test to pass 4. Run all tests
(again) 5. Refactor and re-run tests again Clean up code and apply design
principles 6. Repeat 7.4 Advantages of Test Driven Development ¢ Encour-
ages more testing, productivity, « Makes developers think a bit more about
their design ¢ Acts as an executable documentation for your code ¢ Forces
developer to decouple components

10

6.4 Decoupling

» Before you can write a unit test (a test apply to a single software unit,
aka. A class) you will need to decouple it from other objects and classes
Create fake interfaces in place of other classes (ex. jjinterface;; Employee
and jjinterface;; CheckWriter, etc.) Provide mock implementations (in
example, Mock Checkwriter, Mock Employee)

6.5 JUnit

» What is JUnit? o Junit is a unit-testing framework for Java o Works well
with TDD « What is unit testing? o Looking for errors in a subsystem (class
or object) in isolation o Ex. Given a class Foo, create class FooTest to test
it, looking for particular results to pass / fail

6.6 Assertion and Running a Test

* Junit works by providing assert commands to help us write tests ¢ Placing
assertion calls in the test methods allow us to check for things that we ex-
pect to be true — else the test will fail » In your test class use a method with
an @test flag for the Junit test case Assertion Methods

6.7 Junit Summary

» Tests need failure atomicity (ability to know exactly what failed) » Test for
expected errors / exceptions « Choose representative test cases from equiv-
alent input classes » Avoid complex logic in test methods ¢ Use helpers, like
@Before

7 MVC and Graphics

7.1 Model View Controller

» Model: Holds state information « View: presents a visualization of the
model’s state « Controller: Interprets Ul events (mouse clicks, keyboard in-
put, etc.), and turns UI events into changes to the model (and sometimes
view state) « MVC encourages the separation of: presentation from repre-
sentation view from control

11

7.2 Flow of Information (Idealistic)

Underlying Relationships Often the flow is more complicated because: 1.
The underlying GUI system associates events with view objects. (E.g. in
AWT/Swing. Events are routed through the GUI component the user directs
them at.) 2. The controller may need to know the model’s state 3. Some
events affect only the view and so should not go through the model. (E.g.
Scrolling, cursor position, selection.)

7.3 Flow of Information (More Realistic)

« Strategy (View using the Controller) o The view uses the controller as a
strategy to help it deal with input events o For reusability they usually know
each other only via interfaces » Observer (Controller and View observing
Model) o Controller observes Model so it is aware of relevant changes to
state o View also observes Model so that is aware « Composite and Facade
o Composite can be used by View, Model or Controller o Facade can be used
by Model only « State Pattern (Used by Controllers and Models) o OO Im-
plementation of state machine o Each state is a different class o All have
same interface (strategy pattern) View Controller Model Strategy Observes
Controller Recipient Observer Observes Model Observes Model Recipient
Composite Can be used Can be used Can be used Facade Can be used State
Pattern Can be used Can be used

7.4 Advantages of these MVC Design Patterns

* Clean separation of View from Model ¢ Clean separation of View from
Control o View is platform dependent o By separating controller you can re-
use it » Clean synchronization (observer pattern keeps everything in sync)

7.5 Case Study: Race Rat Game

« See notes.

8 Graphics with libGDX

To be added

12

8.1 About libGDX

8.2 Interface Applications
8.3 App Lifecycle

8.4 Starter Classes

8.5 Android Permissions

8.6 Case Study: MyGdxGame
9 Agile Software Development

« Software failures suck, can cost tons of $$$, software development method-
ologies help us mitigate failure and project oversights while keeping costs
down and productivity high

9.1 The Waterfall Process

» Classic software development process (pre-2000) « Kinda sucked ¢ Prob-
lems: o Lots of reports, meetings, evaluations o Errors still arise, so more
constraints are placed o Becomes unwieldy, awkard to handle, the schedule
slips o Difficult to change fundamental requirements if client not happy

9.2 Agile

» Made by the experts « Better than waterfall process. Faster, more adapt-
able to change. Manifesto for Agile Software Development:

13

	Contents
	UML Class Diagrams
	Class Relationships in UML
	Association (“takes a” relationship)
	Aggregation (Whole-Part Relationship)
	Composition (Whole-Part relationship with same lifetime)
	Summary of Class Relationships
	Recursive Associations (Boomerang Relationships)
	Degrees of Belonging (Lifetimes)
	Interfaces
	Abstract Operations

	Dependence
	UML Diagrams from Assignments / Google to look at

	UML – Sequence and Communication Diagrams
	Principles of Design
	Design Smells
	Single Responsibility Principle (SRP)
	Open-Closed Principle (OCP)
	Liskov Substitution Principle (LSP)
	Dependency-Inversion Principle (DIP)
	Interface Segregation Principle (ISP)

	Design Patterns
	Iterator
	Strategy
	Factory
	Singleton
	Facade
	Composite
	Adapter
	Observer
	Decorator
	Command

	Threads and Concurrency in Java
	Concurrency
	Threads
	Multiple Processors
	Thread Objects in Java
	Race Conditions
	Synchonized Methods
	Design Rule: Shared Objects
	Waiting
	Type 1: Polling
	Type 2: wait and notifyAll
	Mailbox Example
	Deadlocks
	Summary

	Testing
	Levels of Testing
	Testing Methods
	Test Driven Development
	Decoupling
	JUnit
	Assertion and Running a Test
	Junit Summary

	MVC and Graphics
	Model View Controller
	Flow of Information (Idealistic)
	Flow of Information (More Realistic)
	Advantages of these MVC Design Patterns
	Case Study: Race Rat Game

	Graphics with libGDX
	About libGDX
	Interface Applications
	App Lifecycle
	Starter Classes
	Android Permissions
	Case Study: MyGdxGame

	Agile Software Development
	The Waterfall Process
	Agile

