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1 Operational Amplifiers

An Operation Amplifier is a device which, when powered by +V and−V DC
power sources, will amplify an input signal with infinite gain. The input
terminals are known as the non-inverting (+) and inverting (−) terminals.
Where no input current enters + and −, and the input impedance is infinite.

Figure 1: Ideal Op Amp

A is referred to as the Open Loop Gain, where the output and inputs have
not been connected. The Closed Loop Gain will be denoted as G.

The Differential Input Signal vid and Common Mode Input Signal vIcm
are two signals that define the operation of the op-amp. Because the op-
amp is designed to detect the difference between two signals, they are de-
noted as the term vid. The op-amp will also reject common signals, because
only the difference between the two signals will be used for output.

vid = v2 + v1
vIcm = 1

2(v1 + v2)

1.1 Inverting Configuration

In the inverting configuration, the output of the op-amp is connected back
into the inverting terminal. Because in the inverting configuration v2 is
grounded, the negative output counteracts the inifite gain and closes the
loop around the op amp so that it provides a stable output.
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In the case where a resistance is placed between v2 and vo, there would be
a Positive Feedback, and the output would increase exponentially.

Figure 2: Inverting Configuration of Op Amp

v3 = A(v2 − v1)

If v2 = v1, the output will be 0. Where A is infinite,

v3
A = v2 − v1
0 = v2 − v1
v2 = v1

This is known as a Virtual Short Circuit.

The Closed Loop Gain G is defined as vo
vi

From Figure 1, we can see that knowing v1 = v2 = 0, therefore i1 can be
calculated, and passes to the input without entering the op amp terminals.

1.1.1 Finite Open-Loop Gain

When the open-loop gain A is not finite, v3A = v2 − v1 no longer produces
v2 = v1 = 0, instead v2 = v1 = vo

A . Knowing this, calculations for i1 will
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G =
v0
vi

= −R2

R1
(1)

1: Closed Loop Gain of a Non-Inverting Amplifier

follow the same logic, instead with accounting for v0
A .

1.1.2 Input and Output Resistance

The input resistance is equal to R1, and the output resistance is 0.

1.1.3 Weighted Summer

In this configuration, i will be the sum of all incoming currents. Therefore,

i = v1
R1

+ v2
R2

+ ...

In the case where a design must be created to fit an equation with multiple
inverted signs, two op-amps can used in series to flip the initial signals.

vo = v1(
Ra
R1

)(Rc
Rb

) + v2(
Ra
R2

)(Rc
Rb

)− v3(Rc
R3

)− v4(Rc
R4

)

Figure 3: Weighted Summers in Series

1.2 Non-Inverting Configuration

The Non-inverting configuration occurs when a voltage input enters the v2
terminal, instead of v1, while the resistor loop configuration is identical. As
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with the other closed loop, there is a virtual short circuit between v2 and v1,
therefore v2 = v1 = vI , the applied voltage.

The v1 terminal, grounded in this case, creates i1 = vI
R1

, and the solution
can follow as before.

G =
v0
vi

= 1 +
R2

R1
(2)

2: Closed Loop Gain of a Non-Inverting Amplifier

1.2.1 Finite Open-Loop Gain

When the open-loop gain A is not finite, v3A = v2 − v1 no longer produces
v2 = v1 = 0, instead v2 = v1 = vo

A . Knowing this, calculations for i1 will
follow the same logic, instead with accounting for v0

A .

1.2.2 Buffering Amplifier or Voltage Follower

In this configuration, the loop is closed by short circuiting the output to
non-inverting input. This will again create a virtual short circuit between
v2 and v1, and because a real short circuit exists between v1 and vo, all ter-
minal values will be equal to the voltage source, vI .

1.3 Difference Amplifiers

A Difference Amplifier is one where voltage sources are applied to the v2
and v1 inputs. The output can then be considered a non-inverting configu-
ration and an inverting configuration superimposed on each other. By us-
ing supoerposition, the effect of each voltage source can then be calculated
separately and summed together independent of one another.

In a case like this, vo = Advid+AcmvIcm, and the efficiency of the Difference
Amplifier can be determined by its common-mode rejection ratio (CMRR)
In a Difference amplifier with voltage sources at v2 and v1, it can be seen
that this will have a inverting and non-inverting output superimposed on
one another. However, the gain ratio of both inputs must be equal for the
common mode ratio rejection, so the v2 input must use a voltage divider (v3

5



Figure 4: Buffer Amplifier or Voltage Follower

CMRR = 20log
|Ad|
|Acm|

(3)

3: Common Mode Rejection Ratio

and v4) to reduce the input voltage.

Therefore, R4
R4+R3

(1 + R2
R1) =

R2
R1 , and R4

R3 = R2
R1 .

To find values concering solely the vId and vIcm, consider a voltage source
vId or vIcm applied at the inputs, where vIcm is applied to both, and the
negative and positve termals of vid are connected in series between the two
terminals.

1.3.1 Instrumentation Bridge Amplifiers

The Instrumentation Bridge Amplifier is a Difference Amplifier created as
a solution to the low input resistance of Difference Amplifiers, without sac-
rificing ease of control. From Figure 6, it can be noted that R1 can be used
to control the output voltage of the circuit.
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Figure 5: Difference Amplifier

vo =
R4

R3
(1 +

R2

R1
)vId (4)

4: Output of the Instrumentation Bridge Amplifier
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2 Filters and Tuned Amplifiers

A filter is a linear two-port network with a transfer functionT (s) = Vo(s)/Vi(s).
For physical frequencies, the filter transmission is expressed as T (jω) =
|T (jω)|ejφ(ω). The magnitude of transmission can be expressed in decibels
using either the gain functionG(ω) = 20log|T | or the attenuation function
A(ω) = 20log|T |.

Note on Imaginary Numbers

Magnitude =
√
<2 + =2

| ω0
ω0+ωj

| =
√
ω2
0√

ω2
0+ω

2
=

ω2
0√

ω2
0+ω

2

Phase = tan−1(=/<)

φ( ω0
ω0+ωj

) =
tan−1 0

ω0

tan−1 ω
ω0

2.1 Filter Transmission

The transmission characteristics of a filter are specified in terms of the
edges of the passband(s) ωp and the stopband(s) ωs. The maximum allowed
variation in passband transmission, Amax (dB); and the minimum attenu-
ation required in the stopband,Amin (dB). In some applications, the phase
characteristics are also specified.
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T (s) =
a1s+ a0
s+ ω0

(5)

5: General First-Order Transfer Function

The filter transfer function can be expressed as the ratio of two polynomials
in s. The degree of the denominator polynomial,N , is the filter order. The
N roots of the denominator polynomial are the poles (natural modes).

2.2 Filter Types

High Pass allows high frequencies to pass through (the passband) and at-
tenuates frequences below (the stopband).
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Low Pass allows low frequencies to pass through.
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Band Pass will pass all bands, but invert phase.

Band Stop will stop all bands within the specified range.

In each case of attenuation, the slope will be -20 dB per decade.

The All Pass Filter is a special case which does not attenuate, but serves as
a phase shifter, with a unity gain and phase shift at ω0.

2.3 Filter Transmission (2nd Order Filters)

T (s) =
a2s

2 + a1s+ a0
s2 + (ω0/Q)s+ ω2

0

(6)

6: General Second-Order Transfer Function
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2.4 Filter Types

High Pass goes zero as the s value goes to zero, and a2 as s goes to∞.

T (s) = a0
s2+(ω0/Q)s+ω2

0

Low Pass allows low frequencies to pass through.

T (s) = a2s2

s2+(ω0/Q)s+ω2
0
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Band Pass will attenuate all but the ω0 frequency.

T (s) = a1s
s2+(ω0/Q)s+ω2

0

Notch will attenutate at the center frequency ω0.

T (s) = a2
s2+ω2

0

s2+(ω0/Q)s+ω2
0

Q = 1/
√
2 =The Butterworth Maximally Flat Response

BW = ω2 − ω1 = ω0/Q
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2.5 Second Order LCR Resonator

Resonators are used to realize second order filters.

For a current applied to this circuit,

v0 = I · 1
Y

1
Y = 1

1
SL

+Cs+ 1
R

s/C

s2+ s
CR

+ 1
CL

In this case, ω2
0 = 1

CL and ω0
Q = 1

CR

ω0 = 1/
√
LC

Q = ω0CR

Using this structure,

T (s) = v0
vi

= Z2
Z1+Z2
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By following the structure T (s) = v0
vi

= Z2
Z1+Z2

, it can be seen that from
these structures the transfer function for each second order filter can be
derived by these circuits. It can also be seen that the order of capacitors are
mirrored by the single order op amp filters.

2.5.1 Antoniou Inductance Circuit

Inductors in the resonator circuits can be replaced by a system of op amps,
such as the Antoniou Inducance Simulation Circuit.

From the circuit below, an impedanceZ = sC4R1R3R5/R2,L = C4R1R3R5/R2
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The design of this circuit is usually based on selecting R1 = R2 = R3 =
R5 = R and C4 = C, which leads to L = CR2. When used in a resonator,

This circuit would have a pole frequency ω0 = 1/LC6 = 1/C4C6R1R3R5/R2

The gain would be derived from +K op amp,Q = ω0C6R6, ω0 = 1/CR.
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2.5.2 Filter Types

The position of the capacitor C in each case will mirror the filter type in the
first order filters, and in each case the gain will be created through +K.
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2.6 Second Order Active Filters Based on Two Integrators

Biquads based on the two-integrator-loop topology are the most versatile
and popular second-order filter realizations. There are two varieties: the
KHN circuit, which realizes the LP, BP, and HP functions simultaneously
and can be combined with the output summing amplifier to realize the
notch and all-pass functions; and the TowThomas circuit, which realizes
the BP and LP functions simultaneously. Feedforward can be applied to the
TowThomas circuit to obtain the circuit, which can be designed to realize
any of the second-order functions.

2.6.1 KHN Biquad

Analyzed by superposition,
Vhp =

R3
R2+R3

(1 +
Rf

R1
)Vi +

R2
R2+R3

(1 +Rf )(−ω0
s Vhp)−

Rf

R1
(
ω2
0
s2
Vhp)

Where Rf/R1 = 1,R3/R2 = 2Q− 1, and K = 2− (1/Q)

Center frequency,KQ = 2Q− 1 and ω0 = 1/RC.
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2.7 Single Amplifier Biquadratic Active Filters

Single-amplifier biquads (SABs) are obtained by placing a bridged-T net-
work in the negative-feedback path of an op amp. If the op amp is ideal,
the poles realized are at the same locations as the zeros of theRC network.
The complementary transformation can be applied to the feedback loop to
obtain another feedback loop having identical poles. Different transmis-
sion zeros are realized by feeding the input signal to circuit nodes that are
connected to ground. SABs are economic in their use of op amps but are
sensitive to the op-amp nonidealities and are thus limited to low-Q appli-
cations (Q ≤ 10).
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2.7.1 Bridged T Amplifiers

ω0 = 1/
√
C1C2R3R4

Q = (
√
C1C2R3R4

R3
)( 1
C1

+ 1
C2

)−1

m = 4Q2

CR = 2Q
ω0

R3 = R,R4 = R/m

2.8 Sensitivity

The classical sensitivity function Syx = ∂y/y
∂x/x is a very useful tool in inves-

tigating how tolerant a filter circuit is to the unavoidable inaccuracies in
component values and to the nonidealities of the op amps.
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3 Signal Generators and Waveform-Shaping Circuits

There are two distinctly different types of signal generator: the linear oscil-
lator, which utilizes some form of resonance, and the nonlinear oscillator
or function generator, which employs a switching mechanism implemented
with a multivibrator circuit.

3.1 Oscillator Feedback loop

When an output signal is used as input into the v+ terminal of an op amp, a
feedback loop is formed where, if the gain is found to be greater than unity,
the feedback signal will be summed positively. The feedback and gain loop
are then:

Af (s) =
A(s)

1−A(2)β(s)
L(s) = A(s)β(s)

For a feedback loop to produce sinusoidal osciallations at frequency ω0,

L(jω0) = A(jω0)β(jω0) = 1

This is the Barkhausen criterion.

When analyzing a given oscillator circuit, follow the following steps:

1. Break the feedback loop to determine the loop gain A(s)β(s).

2. The oscillation frequency ω0 is found as the frequency for which the
phase angle of A(jω)β(jω) is zero or, equivalently, 360.

3. The condition for the oscillations to start is found from
|A(jω0)β(jω0)| ≥ 1

3.1.1 Amplitude Control

A popular limiter circuit used to control the amplitude of oscillating cir-
cuits is pictured below. By disconnecting the feedback loop, the linear gain
−Rf

R1
is found. When the input source goes positive of negative, the limiting

value L+ or L− can be found, as seen in the transfer characteristic.
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L+ = V R4
R3

+ VD(1 +
R4
R3

),L− = V R3
R2
− VD(1 + R3

R2
)

3.1.2 Wien Bridge

w0 = 1/CR
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L(s) = (1 + R2
R1

)
Zp

Zp+Zs

3.2 Bistable Multivibrators

A bistable multivibrator is an op amp circuit that switches between two sta-
ble states indefinitely when it receives a trigger signal.

The op amp will saturate at the value L+ or L−, until a value less than, or
greater than L+ R1

R1+R2
is presented at the inverting input.

From the transfer characteristics of the non-inverting feedback loop, we
can derive this relationship:

v+ = vo
R1

R1+R2
= L+β

L+β − vI = 0→ no change
L+β − (L+β + 1) = −1→ L−

When the vI value exceeds the other input, it will trigger a positive feed-
back loop which fixes the op amp at its positive or negative saturation.

This pair of values in the negative and positive direction are the VTH and
VTL, which can be found to be L+β and L−β.
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For the non-inverting bistable circuit, superposition must be used to find
the value of v+ due to the input vI and the output vo being fed back into
the op amp. Therefore,

v+ = vI
R2

R1+R2
+ vo

R1
R1+R2

To find the VTH and VTL for this circuit, we must find values that create
make v+ less than zero. Assuming the state that this will happen, set vo to
L+, v+ to 0, and vI to VTL. Rearranging and solving for VTL,

VTL = −L+
R1
R2

This technique can be used to find the VTH as well, by rewriting for L+.
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VTH = −L−R1
R2

For each case, adding a reference DC voltage VR to an input will move the
characteristic horizontally by a value of VR, as the vI input must now match
L+β + VR, for example.

3.3 Astable Multivibrators

By connecting a bistable multivibrator with an RC circuit in a feedback loop,
a square wave can be generated where the circuit will switch states period-
ically. The capacitor will charge until it reaches βL+, then discharge until
βL−, upon which time it will begin charging again.

The time constant for this circuit is τ = CR, which will define the period.

T = 2τ ln1+β
1−β
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T1 = CRVTH−VTL
L+ T2 = CRVTH−VTL

L−

3.4 Monostable Multivibrator

A single pulse seen at pointE will triggerL− saturation, where pointB will
be pulled through the capacitor, as the negative voltage turns off D1.
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After the period T , the circuit will saturate to L+ again, upon which point
it will stabilize until the next pulse.

3.5 Precision Rectifiers
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