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1 Introduction

1.1 System Configuration

Open Loop systems do not monitor or correct the output for disturbances;
however, they are simpler and less expensive than closed-loop systems.

Closed Loop systems monitor the output and compare it to the input. If
an error is detected, the system corrects the output and hence corrects the
effects of disturbances.

1.2 Analysis and Design Objectives

1.2.1 Transient Response

That part of the response curve due to the system and the way the system
acquires or dissipates energy. In stable systems it is the part of the response
plot prior to the steady-state response.

1.2.2 Steady-State Response

Also known as Forced Response, for linear systems, that part of the total
response function due to the input. It is typically of the same form as the
input and its derivatives.
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1.2.3 Stability

That characteristic of a system defined by a natural response that decays to
zero as time approaches infinity.
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2 Modeling in the Frequency Domain
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3 Time Response
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4 Reduction of Multiple Systems

4.1 Block Diagrams

The block diagram of a linear, time-invariant system consists of four ele-
ments: signals, systems, summing junctions, and pickoff points. These ele-
ments can be assembled into three basic forms: cascade, parallel, and feed-
back.

4.1.1 Cascade Form
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4.1.2 Parallel Form

From the above diagram, it is clear that each branch will be R(s)G1(s),
R(s)G2(s), or R(s)G3(s), and when the three are summed at the summer,
R(s)[G1(s) +G2(s) +G3(s)].
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4.1.3 Feedback Form

4.1.4 Moving Blocks

From these diagrams, the logic of moving each process can be validated
when summing each signal and multiplying by each process, then doing
the same for its equivalent system.

[R(s)+X(s)]∗G(s) = R(s)G(s)+X(s)G(s)≡R(s)G(s)+X(s)G(s) = C(s)
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5 Stability

5.1 Routh-Hurwitz Criteria
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5.2 Routh-Hurwitz Special Cases

5.2.1 Zero Only in the First Column

Assume a value for the variable ε, and follow through the system, tracking
sign changes. This should be the same for either assumed value of ε.

Alternately, the reverse coefficients of the denominator can be used in anal-
ysis, as seen below:
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5.2.2 Entire Row Is Zero

If an entire row is zero, return to the row above, and form the equation
represented by those coefficients. For example, from the system below, at
row s3 there is a row of zeroes. From the row s4 above, form the equation
s4+6s2+8. The derivative of this equation will take the place of the row of
zeroes. Therefore, 4s3 + 12s+ 0 will take the place of the zeroes in row s3.

In the case of a row of zeroes formed by a row of even polynomials, for
example s4+s2+1, it can be determined that its roots are symmetric about
the origin. If we don’t have a row of zeroes, we cannot have roots on the
jw-axis. Once a row of zeroes is found for an even polynomial, everything
from that row to the end is a test of only the even polynomial. Because in
the example above, the zeroes occur in the s3 row, it’s considered the s4 row
that causes the zeroes, and it is therefore even.
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From the example above, the row of zeroes can be seen to occur in the s4

row. The rest of rows are therefore a test of the even polynomial, where it
is determined there are no changes in sign. Thus, there are no poles in the
right half plane, and no left plane poles can exist due to symmetry. There-
fore, all four poles must be on the jw-axis.

The findings for the even polynomials are then combined with the findings
for the rest of the system:
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6 Steady State Errors

Steady State Error is defined as the difference between the input and output
as t→∞. When testing for factors such as constant position, constant ve-
locity and constant acceleration, inputs such as unit steps u(t), ramps r(t)
and parabolas are used. This discussion is limited to stable systems.

Most steady state errorsE(s) arise from the input and/or the configuration
of the system, as seen in the diagrams below for general closed loop and
unity feedback systems.
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In the first case E(s) = R(s) − C(s) is the error. If the input R(s) is a step
input, then C(s) should = R(s) and E(s) = 0. However, if gain K is intro-
duced,C(s) = KR(s) and E(s) must be finite and non-zero.

From these systems we see that C(s) = KE(s), or E(s) = 1
KC(s)

6.1 Steady State Error for Unity Feedback Systems

Steady-state error can be calculated from transfer functionT (s) or the open
loop transfer function G(s). Once E(s) is found, the steady state error can
be found using the Final Value Theorem, which states that the value at in-
finity is equal to the Laplace as s→ 0.

E(s) = R(s)− C(s)
C(s) = R(s)T (s)

E(s) = R(s)[1− T (s)]
e(∞) = lims→∞e(t) = lims→0sE(s)
e(∞) = lims→0sR(s)[1− T (s)]
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6.1.1 Steady State Error in Terms of G(s)

E(s) = R(s)− C(s)
C(s) = E(s)G(s)

E(s) = R(s)
1+G(s)

e(∞) = lims→∞
sR(s)
1+G(s)

6.2 Static Error Constants and System Type

The steady-state error for unit step inputs is

e(∞) = 1
1+lims→0G(s)

The steady-state error for ramp inputs of unit velocity is

e(∞) = 1
lims→0sG(s)

The steady-state error for parabolic inputs of unit acceleration is

e(∞) = 1
lims→0s2G(s)

The terms in the denominator are known as kp, kv, ka, the static error con-
stants, representing position, velocity and acceleration, respectively.

Systems can also be defined by system type. This defines the number of
pure integrations in the forward path, assuming a unity feedback system.
Increasing the system type decreases the steady-state error as long as the
system is stable.
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This will also be apparent by the structure of the system. An s factor in the
denominator which won’t cancel with u(t) input indicates the system is not
Type 0. Therefore, testing with a ramp and parabola input will determine
whether the static constant is finite for each input.

6.3 Steady-State Error Specifications

The steady-state error is inversely proportional to the static error constant
- the larger the constant, the smaller the steady-state erorr. Increasing gain
increases the static error constant, thus, increasing the gain decreases the
steady-state error if the system is stable.

6.4 Steady State Disturbances

C(s) = E(s)G1(s)G2(s) +D(s)G2(s)

However,C(s) = R(s)− E(s), therefore,

E(s) = 1
1+G1(s)G2(s)

R(s)− G2(s)
1+G1(s)G2(s)

D(s)

e(∞) = s
1+G1(s)G2(s)

R(s)− sG2(s)
1+G1(s)G2(s)

D(s)

e(∞) = eR(∞) + eD(∞)
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6.5 Forming Equivalent Unity from Non-Unity Systems
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7 Root Locus Techniques

The following sections apply to Negative Feedback Closed Loop systems.

7.1 Sketching the Root Locus

7.1.1 Number of Branches

The number of branches in a root locus equal the number of poles.

7.1.2 Symmetry

The root locus is symmetrical about the real axis.

7.1.3 Real Axis Segments

On the real axis, forK > 0 the root locus exists to the left of an odd number
of real-axis, finite open-loop poles and/or finite open-loop zeros.

7.1.4 Starting and Ending Points

The root locus begins at the finite and infinite poles of G(s)H(s) and ends
at the finite and infinite zeros of G(s)H(s).
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7.1.5 Behavior at Infinity

When finding K, remember that the denominator of the transfer function
T (s), 1 +KG(s)H(s) = 0 if the point is on the root locus. Set s to a known
point on the root locus (break in points work) and solve 1+KG(s)H(s) = 0
for K.

7.2 Refining the Sketch

7.2.1 Breakaway/Break-in Point

At the breakaway or break-in point, the branches of the root locus form an
angle of 180/nwith the real axis, wheren is the number of closed-loop poles
arriving at or departing from the single breakaway or break-in point on the
real axis. These are the points when gain is at its minimum and maximum,
respectively.

For all points on the root locus,
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K = − 1
G(s)H(s) , 1

G(s)H(s) = −1 and by differential calculus,

dK = 0 will σ, whose zeroes will produce the break-in points.

Or, conversely,∑ 1
σ+zi

=
∑ 1

σ+pi

Where z and p are the zero and pole values. By equating the two sides and
simplifying to a single equation, factoring can produce σ.

7.2.2 jω-Axis Crossings

The crossing of the jω axis defines when the system becomes unstable. The
crossing of the ω axis deines the frequency of oscillation, while the gain at
the jω axis yields the maximum positive gain for system stability.

The jω axis crossings can be found using the Routh-Hurwitz criterion. Forc-
ing a row of zeros yields the gain, then going back a row and solving for the
roots yields the frequency at the imaginary axis crossing.
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7.2.3 Angles of Departure and Arrival

If we assume a point on the root locus ε close to a complex pole, the sum of
angles drawn from all finite poles and zeros to this point is an odd multiple
of 180◦. Except for the pole that is ε close to the point, we assume all angles
drawn from all other poles and zeros are drawn directly to the pole that is
near the point. Thus, the only unknown angle in the sum is the angle drawn
from the pole that is ε close. We can solve for this unknown angle, which is
also the angle of departure from this complex pole.

−θ1 + θ2 + θ3 − θ4 − θ5 + θ6 = (2k + 1)180◦

or

θ1 = θ2 + θ3 − θ4 − θ5 + θ6 − (2k + 1)180◦

If we assume a point on the root locus ε close to a complex zero, the sum of
angles drawn from all finite poles and zeros to this point is an odd multiple
of 180◦. Except for the zero that is ε close to the point, we can assume all
angles drawn from all other poles and zeros are drawn directly to the zero
that is near the point. Thus, the only unknown angle in the sum is the angle
drawn from the zero that is ε close. We can solve for this unknown angle,
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which is also the angle of arrival to this complex zero.

−θ1 + θ2 + θ3 − θ4 − θ5 + θ6 = (2k + 1)180◦

or

θ2 = θ1 − θ3 + θ4 + θ5 − θ6 − (2k + 1)180◦

Note that finding the angle at these points is calculating the length from
the poles or zeroes to this point.

7.3 Plotting and Calibrating the Root Locus

When locating points on the root locus and finding their specified gain, for
example as it crosses the radial line representing 20% overshoot, such as
the below graph where ζ = 0.45

Evaluating the graph at points along the line, and summing the angles from
poles and zeros, it can be determined if a point is on the root locus if the
angles are a multiple of 180◦.
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ζ = cos(θ), therefore cos−1ζ = θ

From this value θ, the x and y components of the radial line can be plotted,
using cosθ, sinθ, and rsinθ, rcosθ to find the components of each radius.

7.4 Generalized Root Locus

If finding the root locus of a system concerning a single parameter instead
of gainK, an equivalent system can be used where the denominator is rep-
resented as 1 + p1G(s)H(s). From the below system,

T (s) = KG(s)H(s)
1+KG(s)H(s) =

10
s2+(p1+2)s+2p1+10

= 10
s2+2s+10+p1(s+2)

7.5 Positive Feedback Systems

KG(s)H(s) = 1 = 1 6 k360◦ k = 0, 1, 2, 3...

1. Number of Branches
No change
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2. Symmetry
No change

3. Real Axis Segments
On the real axis, the root locus for positive-feedback systems exists to
the left of an even number of real-axis, finite open-loop poles and/or
finite open-loop zeros.

4. Starting and Ending Points
The root locus for positive-feedback systems begins at the finite and
infinite poles of G(s)H(s) and ends at the finite and infinite zeros of
G(s)H(s).

5. Behavior at Infinity
The root locus approaches straight lines as asymptotes as the locus
approaches infinity. Further, the equations of the asymptotes for positive-
feedback systems are given by the real-axis intercept, σa, and angle,
θa, as follows:

σa =
∑
FinitePoles−

∑
FiniteZeros

#FinitePoles−#FiniteZeros
θa =

k2π
#FinitePoles−#FiniteZeros
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8 Design via Root Locus
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9 Frequency Response Techniques
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