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1 Descriptive Statistics

1.1 Statistics

Statistics are the summarization of a set of data that has been collected,
which demonstrates random variation. Extracting meaning from data.

1.2 Inferential Statistics

Making inferences about a situation based on data, such as forecasting.
Descriptive statistics can be the basis for inferences.

1.3 Representative Values

1. Mean

2. Median

3. Mode

4. Range - [Min, Max]

5. Variance - Average of deviation squared from the mean

6. Standard Deviation - Measure of average absolute deviation

7. Skewness - Measure of the shape of the distribution funciton

8. Quantiles - Generalization of the median to percentiles

1.4 Observational vs. Experimental Data

Experimental involves manipulation objects to determine cause and effect
in data. Observational refers to naturally occurring events.
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2 Basic Probability

2.1 Probability Calculus

Probability events have a total probability between zero and one.

Pr[AnEvent] = 1 (1)

1: An event which is sure to happen

The definition of probability for how often an event is observed can be re-
lated to the number of repetiions of the experiment.

Pr[Heads] =
number k of Heads in N coin tosses

coin tosses
(2)

2: Counting the probability of heads in a set of coin tosses

The larger the number of repetiions, the higher accuracy with which we can
predict the likelihood of an event happening.

2.2 Probability Model

2.2.1 Events

Events are elements in the set of possible outcomes in an experiment.

2.2.2 Sample Space

The set of all possible outcomes for an experiment.

S = {1, 2, 3, 4, 5, 6} (3)

3: The sample space for a dice roll

A1 = {1}, A2 = {1, 2, 5} (4)

4: Subsets containing events in the sample space
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The complement of a subsetAC is the subset of all other events in the sam-
ple space which are not contained in A.

2.3 Event Algebra

2.3.1 Or

The combination of two or more sets.

For A = {1, 2, 5} and B = {3, 4},A1 +A2 = {1, 2, 3, 4, 5}

2.3.2 And

The set of events which occur in two or more sets.

For A = {1, 2, 3, 5} and B = {3, 4},A1A2 = {3}

Axioms

1. Mutual exclusion: AAc = 0

2. Inclusion: AS = A

3. Double complement: (AC)C = A

4. Commutation: A1 +A2 = A2 +A1

5. Associativity: A1 + (A2 +A3) = (A1 +A2) +A3

6. Distributivity: A1(A2 +A3) = A1A2 +A1A3

7. DeMorgans Law: (A1A2)
c = (A1)

C + (A2)
C

2.4 Probability of Events

Axioms

1. For any event A: Pr[A] ≥ 0

2. Pr[S] = 1

3. If A and B are Mutually Exclusive then Pr[A+B] = Pr[A] +Pr[B]
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Mutual Exclusivity refers to the fact that A and B will never occur
simultaneously, ie AB = 0.

4. Axiom 3 can be extended: Pr[A1 +A2 + ...] = Pr[A1] + Pr[A2] + ...

2.4.1 Non-Mutually Exclusive

In cases where A and B can occur in the same set, Axiom 3 will not apply.
This is due to the fact that in overlapping events, the same area of proba-
bility will be counted twice, though it has no statistical importance.

Pr[A1 +A2] = Pr[A1] + Pr[A2]− Pr[A1A2] (5)

5: Non mutually exclusive OR

2.4.2 Complement of an event

From expanding on these axioms, it can be seen that the complement of an
event has a probability related to subtraction of itself from the sample space
probability. If the chance of the event happening is known, the chance of an
event not happening is found by subtracting this from absolute certainty.

Pr[Ac] = 1− Pr[A] (6)

6: The complement of a set versus the whole

2.4.3 Statistical Independence

Two events A and B are said to be statiscally independent if

Pr[AB] = Pr[A]Pr[B] (7)

7: Statistical independence

This refers to the fact that statistical data will happen independent of the
preceding events. If you flip a coin, the probability of the next coin will
be the same. If you take items from a bin, the probability of the next item
being picked will go up, and is therefore dependent.
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2.5 Repeated Independent Trials

From the rule of statistical independence, we can process repeated trials:

Coin Flips

Pr[H] = p

Pr[T ] = Pr[Hc] = 1− p = q

Pr[HHH] = ppp = p3

Pr[HTH] = pqp = p2q

Knowing that the probability of either event is 0.5, we can take the list of
possible outcomes and calculate the probability.

Pr[At least two heads] = Pr[HHH] + Pr[HHT ] + Pr[HTH] + Pr[THH]

= ppp+ ppq + pqp+ qpp

= (0.5)3 + (0.5)2 ∗ (0.5) + (0.5)2 ∗ (0.5) + (0.5) ∗ (0.5)2

= 0.5

Pr[No heads] = Pr[TTT ] = q3 = 0.125

2.5.1 Sampling With Replacement

In this case, we consider an event where an event occurring does not sub-
tract from a finite amount of events, ie a coin flip. In the case of heads or
tails, there aren’t one less heads or tails. So it is as if we replace the event
in our sample space.

2.5.2 Sampling Without Replacement

Finite amounts of events that can be subtracted from the whole. If this
event happens, it won’t happen again, as if we have taken our card from a
deck of cards and not placed it back in the deck.
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2.5.3 Order of Outcomes When Sampling Without Replacement

Cases when its important what order events occur in. Did we draw the Ace of
Spades within the first 3 draws? The number of each event is not important.

K-Tuples

When a trial is repeated k times, we form a sample space of outcomes made
up of k number of events.

2.5.4 The Rule of Product

How many possibilities are there for the formation of k-tuples, if there are
Ni choices for the ith element?

N1 ∗N2 ∗ ...Nk (8)

8: The Rule of Product

By this rule, the number of possibilities when rolling a dice, then flipping a
coin, will be 6 ∗ 2. In the case where same number of outcomes are possible
with each experiment, the number of k-tuples is Nk, or 2k in the case of
repeated coin tosses.

2.5.5 Permutations or Unordered Outcomes

We no longer care in what order outcomes occur, we are only concerned
with the number of outcomes of a certain sort across all trials.

This involves the number of ways we can choose k objects in N choices.

Permutations Without Replacement

• Experiments with two or more possible outcomes

• These trials can be repeated independently for N times

• For each kth trial the outcome from the previous is removed
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• Probabilities change for each consecutive trial

The resulting set is ordered, but as mentioned before, we only care about
the number of possible permutations from these elements.

The number of possible sets is N ! or N ∗ (N − 1) ∗ (N − 2) ∗ ...2 ∗ 1

Example - The 13 cards of a suit in a deck of cards can be laid out in 13! or
6227020800 different ordered sequences.

If you want just k draws fromN possible ways to draw the object, the num-
ber of sets will instead be from N to (N − k + 1)

Consider this problem - Lisa has 13 different ornaments and wants to put 4
ornaments on her mantle. In how many ways is this possible?

Using the product rule, Lisa has 13 choices for which ornament to put in the
first position, 12 for the second position, 11 for the third position, and 10 for
the fourth position. So the total number of choices she has is 13∗12∗11∗10.
Using the factorial notation, the total number of choices is 13!

9! .

From this example, we can see that if we have N objects and want to ar-
range k of them in a row, there are N !

(N−k)! ways to do this.

The notation for permutations is P 13
3

2.5.6 Combinations or Non-Unique Outcomes

A combination is a way of choosing elements from a set in which order does
not matter.

Consider the following example: Lisa has 13 different ornaments and she
wants to give 3 ornaments to her mom as a birthday gift (the order of the
gifts does not matter). How many ways can she do this?

We can think of Lisa giving her mom a first ornament, a second ornament, a
third ornament, etc. This can be done in P 13

3 ways. However, Lisa’s mom is
receiving all three ornaments at once, so the order Lisa decides on the orna-
ments does not matter. There are 3! reorderings of the chosen ornaments,
implying the total number of ways for Lisa to give her mom an unordered
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set of 5 ornaments is 13!
3!10! .

N !

k!(N − k)!
(9)

9: Rule of Combinations or Unordered Permutations

The notation for combinations is CNk =
(
N
k

)
The number of ways to choose k objects in any order from a set ofN objects.

2.6 Conditional Probability

A conditional probability is a probability that a certain event will occur
given some knowledge about the outcome or some other event.

P [A|B] is a conditional probability, it is read as ”Probability of A given B”.

Pr[A|B] =
Pr[AB]

Pr[B]
(10)

10: Rule of Conditional Probability

A simple example - A fair 12-sided die is rolled. What is the probability that
the roll is a 3 given that the roll is odd?

This is Pr[3|Odd] or Pr[3]Pr[Odd]
Pr[Odd]

Because B has already happened, the intersection of B and A can have the
B probability removed, because it is statistically redundant.

Pr[A|B] =
Pr[AB]

Pr[B]
=
Pr[B]Pr[A]

Pr[A]
= Pr[B] (11)

11: Conditional Probability if statiscally independent
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2.6.1 Bayes Theorem

When attempting to compute the conditional probability of two events,
when only one event is known, the Bayes Theorem allows for a workaround.

ConsiderH to be Hypothesis, and E to be Evidence

Pr[H|E] =
Pr[E|H]Pr[H]

Pr[E]
(12)

12: Bayes Theorem

We can expand the equation in the numerator to demonstrate fully:

Pr[E|H]Pr[H] = Pr[EH]
Pr[H] ∗ Pr[H] = Pr[EH] = Pr[HE]

Therefore, Pr[H|E] or Pr[HE]
Pr[E] can be found from Pr[E|H] and vice versa.

2.6.2 Total Probability

If A1, A2, and A3 form a partition of the sample space, for each Ai

Pr[Ai|B] =
Pr[B|Ai]Pr[Ai]

Pr[B]
, i = 1, 2, 3 (13)

13: Total Probability

Knowing this, Pr[B] can be found from Pr[B|A1] + Pr[B|A2] + Pr[B|A3]

Pr[Ai|B] =
Pr[B|Ai]Pr[Ai]

Pr[B|A1] + Pr[B|A2] + Pr[B|A3]
, i = 1, 2, 3 (14)

14: Bayes General Rule

Pr[B] = Pr[B|A1] + Pr[B|A2] + Pr[B|A3] (15)

15: Total Probability, when A1,A2,A3 form a partition
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3 Random Variables

Random variables deal with a function X which maps a number x from the
sample space S. The number can be placed on the real number line, and a
probability assigned to it based on its random occurrence.

3.1 Discrete Probability Distributions

Discrete random variables involve events with a discrete set of values.

3.1.1 Probability Mass Function

TheProbabilityMass Function, or PMF fk[k] is a plotting of the probability of
all events associated with a random variable K. The sum of all amplitudes
of the graph,

∑
fk[k] will be 1.

For a given value k, the probability of this value is fk[k] = Pr[K = k].

Consider fk[k] the ranking of weights of each possible outcome. If an out-
come is more probable, it is heavier, and plotted above the others.

3.1.2 Bernoulli Random Variable

A Bernoulli RV is a discrete variable which will only produce values of 1 and
0. Therefore, the likelhood of one will be p and the other will be 1− p.
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3.1.3 Binomial Random Variable

The Bernoulli concept can be extended with combinatorics, for example in
the base of binary transmission error. When detecting the error in the first
k-bits of a n-bit transmission, fK [k] =

(
n
k

)
pk(1− p)(n−k).

As shown in earlier sections, there are
(
n
k

)
possible variations of k bits in an

n-bit long transmission. If our likelihood of non-error bits is p, and error is
(1− p), the above will be intuitively correct.

3.1.4 Geometric Random Variable

Geometric RVs concern a wait for an event to happen. Should the expected
event be given p probability, there will be k consecutive (1−p) events before
the p occurs. Therefore, as seen in the graph below, the event occuring at
the second transmission will be (1− p)2p.

fK [k] = p(1− p)k (16)

16: Geometric Random Variable PMF (0 ≤ k <∞)

3.1.5 Poisson Random Variable

For a situtation where revents occur randomly at a given rate λ over a cer-
tain time interval t, the probability of k events happening within this time
frame has been experimentally verified with λt representing the average.
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fK [k] =
ak

k!
e−a (17)

17: Poisson Random Variable PMF

Note that for finding the probability of an event occurring after time t, the
probability becomes Pr[0] + Pr[1] + Pr[2]...+ Pr[t].

3.1.6 Uniform Random Variable

When all events are equally likely, the probability of each can be found eas-
ily from the uniform random variable PMF.

fK [k] =
1

n−m+ 1
(18)

18: Uniform Distribution
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3.2 Continuous RVs and Their Distributions

For values which can take on a continuum of values, such as voltage, veloc-
ity, and mass, new tools are used to analyze their probability. The probabil-
ity of these events is determined using the Cumulative Distribution Function
or CDF, which is written as FX(x) = Pr[X ≤ x].

By this notation we can see that by following the graph from left to right,
the probability of the event occuring to the left of value x will be found by
the amplitude of the CDF at that value. Therefore, as x→∞, Fx → 1.
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When finding the probability of a value occurring between points a and b,
their CDF values can be used. Remember this is Distribution, not Den-
sity, as we’ll see in the PDF below. By keeping this straight, their purposes
should be easy to remember.

Pr[a < X ≤ b] = FX(b)− Fx(a) (19)

19: CDF Probability Within a Range (b > a)

The Probability Density Function or PDF is a derivative of the CDF that can
also be used to find this probability:

This can be seen to be similar to the Probability Mass Function, as it will
integrate over its full range to 1 -

∫∞
∞ fX(x)dx = 1. The difference is due to

16



Pr[a < X ≤ b] =

∫ a

b
fX(x)dx (20)

20: CDF Probability Within a Range (b > a) From Integration

continous distributions being non-discrete - we can no longer say an item
has mass, but points will now be denser (equivalent to heavier).

To use the PDF to find the probability of a number a+ ∆x, we can multiply
the PDF value at this point by the increment value to find the probability.

Pr[a < X ≤ a+ ∆x] = fX(a) ·∆x (21)

21: PDF Probability Within a Range (a < a+ ∆x)

Integrating over a range (a, b) will also produce Pr[a < x ≤ b] from the PDF.

3.3 Common Continuous RVs

3.3.1 Exponential Random Value

An extension of the Geometric Random Variable to the continuous realm,
this represents a continuous graph of wait times where again λ represents
the rate of arrival for an event as in Poisson RVs.

Its PDF follows fX(x) = λe−λx

3.3.2 Gaussian RV

The Gaussian or ”normal” random variable arises naturally in numerous
cases. It can be defined by its mean, µ, which will be the center of its bell
shape, and its standard deviation σ, which denotes the value in each direc-
tion it will pass before reaching 60.7% of its peak value.

fX(x) =
1√

2πσ2
e−(x−µ)

2/2σ2
(22)

22: The Gaussian PDF
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The square of the standard deviation, σ2 is known as the variance, and is a
measure of the total width of the bell between these points.

The standard form of the PDF, centered at 0 with a σ2 = 1 can be used to
express Pr[X ≤ x]:

Φ(x) =
1√
2π

∫ x

∞
e−x

2/2 (23)

23: The Standard Gaussian Function

FX(x) = Pr[X ≤ x] = Φ(x−µσ )

And as with any other CDF, Pr[a < x ≤ b] = FX(b)− Fx(a)

These Φ values, which can be used as a CDF, as with other standard Gaus-
sian values, can be found by table.

3.3.3 Gaussian Q Values

In cases where the probablity of values at either tail of a Gaussian is re-
quired, such as Pr[a < x ≤ ∞], it is common to use Q functions.

Q(x) = 1− Φ(x) (24)

24: The Gaussian Q Function

When a value x is sought which is less than µ, the argument of the Q func-
tion will be negative, and define the left tail of the CDF.Q(−x) = 1−Q(x).

18



Pr[X < x] = Q(
x− µ
σ

) (25)

25: The Gaussian Q Function

Pr[X > x] = 1−Q(x) = Q(
−x+ µ

σ
) (26)

26: The Gaussian Q Function with Negative Argument

Pr[a ≤ x ≤ b] = Q( b−µσ )−Q(a−µσ )
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3.4 Expectation

Expecation can be considered the average of the expected values in a sam-
ple space, where the values are weighted by their probability and summed.

E{X} =
∑

kfK [k] (27)

27: Expectation of a Discrete RV

For continuous random variables, when the PDF exists, the expectation can
be calculated whenever the variable converges absolutely:

E{X} =

∫ ∞
−∞

xfX(x)dx (28)

28: Expectation of a Continuous RV

An important feature of the expectation is its invariance.

E{c} = c
E{X + c} = E{X}+ c
E{cX} = cE{X}
E{E{X}} = E{X}

3.4.1 Moments

The moment is the produced when the X value of the expectation is raised
to the n power. If g(X) = Xn for n = 1, 2, 3

E{Xn} =
∫∞
−∞ x

nfX(x)dx (continuous)

E{Xn} =
∑
knfK [k] (discrete)

The first moment is the mean, and each further n value is called the nth
moment of the distribution.

3.4.2 Central Moments

The Central Moment is a mean of a random variable not centered at 0. Of
particular importance is the variance, the square root of which will grant
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the width of the distribution.

σ2 = Var[X] = E{(X −mX)2}, the 2nd central moment

mX = E{X}, the mean of X

σX is known as the Standard Deviation, and is a measure of the width.

Var[c] = 0
Var[X + c] = Var[X]
Var[cX] = c2Var[X]

Also note, Var[X] = E{X2}−m2
X - this method is much easier to solve than

the initial method of finding variance.

3.5 Entropy

From the topic of information encoding, it was found that the definition of
information for an event A is:

I(A) = −log2Pr[A] bits

And the average of information for two exclusive events A and B:

H = Pr[A]I(A) + Pr[B]I(B)

The definition of average information is in fact an expectation for two events
that form a partition of a sample space.

For a partition Ai where I(Ai) = −log2Pr[Ai],

H = E{I} =
∑
I(Ai)Pr[Ai] =

∑
(−log2Pr[Ai])Pr[Ai]

or
−
∑

(log2Pr[Ai])Pr[Ai]
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4 Multiple Random Variables

4.1 Discrete Random Variables

4.1.1 The Joint PMF

Joint probability distribution can be thought of as Pr[(X ≤ x and Y ≤ y)]

FX,Y (x, y) where FX(x) = Pr[X ≤ x] and FY (y) = Pr[Y ≤ y]

A relationship can be deterministic, such as Y = 2X + 1 or probabilistic,
where probabilities of one value will affect the other.

Joint Probabilities refers to the probability of two variables taken together,
such as Pr[(X ≤ q) and (Y ≤ y)]. To answer this, the Joint CDF, FX,Y (x, y)
must be found.

Recall from single random variable discussion, the PDF is the derivative of
the CDF. Therefore, for cases where there are multiple variables:

fX,Y (x, y) = ∂
∂x

∂
∂yFX,Y (x, y)

For continuous distributions, the variables x and y will be used, however
discrete distributions use k, l, and so on.

From each joint distribution, individual distributions for each variable, or
Marginal Distributions can be found. These are simply the PDFs of the
individual random variables found in earlier sections.
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fK1 [k1] =
∞∑

k2=−∞
fK1K2 [k1, k2]

fK2 [k2] =
∞∑

k1=−∞
fK1K2 [k1, k2]

4.1.2 Independent Random Variables

From earlier in the course, events were defined as independent if Pr[AB]
= Pr[A]. Similarly, random variables can be said to be independent if the
product of marginal distributions is equal to the joint distribution.
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fK1K2[k1, k2] = fK1 [k1] · fK2 [k2]

fX,Y (x, y) = fX(x) · fY (y)

Notice that this is a special condition for random variables and does not ap-
ply in general! In particular, if two random variables are not independent,
there is no way that the joint PMF can be inferred from the marginals. In
that case the marginals are insufficient to describe any joint properties be-
tween K1 and K2.

4.2 Continuous Random Variables

4.2.1 Joint Distributions

CDF
fX1X2(x1, x2) =

∂2FX1X2
(x1,x2)

∂x1∂x2

PDF
FX1X2(x1, x2) =

∫ x1
−∞

∫ x2
−∞ fX1X2(u1, u2)du1du2

Joint continuity can be proven if the PDF evaluates to 1.

4.2.2 Marginal PDFs

Similar to the marginal PMF, each distribution X1 and X2 can be described
by its own PDF:

fX1(x1) =
∫∞
−∞ fX1X2(x1, x2)dx2

fX2(x2) =
∫∞
−∞ fX1X2(x1, x2)dx1
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4.2.3 Correlation

Correlation is defined as the similarity between two random variables X1

and X2. Note that this is the multiplication of X1 and X2, not an ”and”.

r = E{X1X2}

The correlation is calculated using the expectation, worked out as the ex-
pectation for g(X1, X2) = X1X2 based on the joint PDF for X1 and X2.

r = E{X1X2} =
∫ ∫

x1x2fX1,X2(x1, x2)dx1dx2

r = E{KL} =
∑
k

∑
l

klfK,L(k, l)

The correlation can be misleading if both X1 and X2 have offsets built in
to their means. The get around this, covariance is defined to remove their
means.

Covariance c = Cov[X1, X2] = E{(X1 −m1)(X2 −m2)}

Where m1 and m2 are the means of the two random variables taken seper-
ately:
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m1 = E{X1} =
∫
x1fX1(x1)dx1

m2 = E{X2} =
∫
x1fX2(x2)dx2

Note - Covariance is similar to variance, in that variance is a measure of how
to the outcome of X1 can vary, while covariance is the measure of how the
outcome of X1 and X2 can vary together.

Also similarly to variance:

Var[X] = E{X2} −m2
x

Cov[X1, X2] = E{(X1 −m1)(X2 −m2)} = E{X1X2} = m1m2 = r −m1m2

4.2.4 Correlation Coefficient

If comparing the correlation of one of pair of random variables to the cor-
relation of another pair of random variables, both can be normalized based
on their standar deviations:

p = Cov[X1,X2]
σ1σ2

Where σ1 and σ2 are the standard deviations of X1 and X2.

4.2.5 Invariance of Expectation

If a random variable X with PDF fX(x) is transformed to another random
variable Y by a deterministic relationship, Y = g(X), e.g.

Y = 3X + 2

Then moments for Y can be obtained from the PDF of X, without calculat-
ing the new PDF fY (y):

E{Y } =
∫
g(x)fX(x)dx
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4.3 Sum of Multiple RVs

Because the expectation E{} is an integral, for the case that Y = X1 + X2

for RVs X1 and X2:

E{Y } = E{X1}+ E{X2} = mX1 +mX2

Therefore, because variance will distribute via multiplication:

Var[Y ] = E{(Y −mY )2} = E{(X1 +X2)− (mX1 +mX2))2}

= E{((X1 −mX1) + E{(X2 −mX2))2}

= E{(X1 −mX1)2 + E{(X2 +mX2)2 + 2E{(X1 = mX1)(X2 −mX2}}

Var[Y ] = Var[X1] + Var[X2] + 2Cov[X1, X2]

Var[Y ] therefore also depends on Cov[X1, X2]. If X1 and X2 are indepen-
dent, Cov[X1,X2] = 0, and Var[Y ] = Var[X1] + Var[X2].

4.3.1 PDF for X1 +X2

Begin by finding the CDF in a method similar to discrete RVs:

FY (y) = Pr[Y ≤ y] = Pr[X1 +X2 ≤ y]

=
∫

(
y−x1∫
−∞

fX1,X2(x1, x2)dx2)dx1

Note the limit of integration for the fX2 portion uses the upper limit as the
equivalent of x2 (because y = x1 + x2)

The PDF can be obtained from this because fY (y) = d
dyFY (y)

fY (y) = d
dy

∫
(
y−x1∫
−∞

fX1,X2(x1, x2)dx2)dx1

Because d
dt

t−a∫
−∞

g(θ)dθ = g(t− a),

fY (y) =
∞∫
−∞

fX1,X2(x1, y − x1)dx1

If the two RVs are independent,

fY (y) =
∞∫
−∞

fX1(x1)fX2(y − x1)dx1
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4.3.2 Notes on Sums of Independent RVs

1. WhenX1 andX2 are independent, Cov[X1, X2] = 0 and Var[Y ] = Var[X1]
+ Var[X2], while mY = E{Y } = E{X1}+ E{X2} = mX1 +mX2

2. If X1 and X2 have the same distribution,mX1 = mX2 = m

4.3.3 Sums of Dependent RVs

In the case of Y = X1 +X2, if X1 and X2 are not independent, then:

fY (y) =
∞∫
−∞

fX1,X2(x1, y − x1)dx1

mY = E{Y } = E{X1}+ E{X2} = mX1 +mX2

Var[Y ] = E{(Y −mY )2} = Var[X1]Var[X2] + 2Cov[X1, X2]

4.4 Bivariate Gaussian

Two joint RVs with Gaussian characteristics together will have a joint Gaus-
sian characteristic, called bivariate or multi-variate for more than 2.
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5 Limit Theorems

Mn = 1
n

n∑
i=1

Ki

E{Yn} = mYn = nmx

Var[Yn] = σ2Yn = nσ2x

Zn = Yn−mYn
σYn

= Yn−nmx√
nσx
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